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The static magnetic solutions in magnetic composites with arbitrary susceptibility inhomogeneity

and anisotropy are accurately computed using an efficient numerical algorithm based on a

proposed Fourier spectral iterative perturbation method for 3-dimensional systems. An advantage

of this method is that the interphase boundary conditions are automatically considered without

explicitly tracking interphase interfaces in the composites. This method can be conveniently

implemented in phase-field modeling of microstructure evolution in systems with inhomogeneous

susceptibility as well as inhomogeneous spontaneous magnetization distributions. Based on the

proposed method, the effects of microstructures including the susceptibility mismatch between the

inclusions and matrix, inclusions volume fraction, and inclusions arrangement on the effective

susceptibility and local static magnetic field distribution of the composite are investigated. It

is found that the interactions among the inclusions embedded in the matrix play critical roles in

determining the composite properties. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4906567]

I. INTRODUCTION

Composite materials are becoming more competitive

because novel functionalities and enhanced properties can be

generated by mixing the different pure (uniform, homogene-

ous, and single-phase) materials.1–5 Among the various com-

posite materials, magnetic particle-filled composites can be

utilized for making smart materials.6,7 Composite materials

are normally characterized by effective coefficients, and, in

magnetic composites, the effective magnetic susceptibility is

of interest. The effective magnetic susceptibility depends not

only on the constituent materials but also on the microstruc-

tures of the magnetic composites. For composites with arbi-

trary structure, the theoretical determination of the effective

magnetic susceptibility is very difficult and is possible only

in certain approximations. For instances, Maxwell-Garnett’s

(MG) model can be used to calculate the effective magnetic

susceptibility of magnetic composites containing randomly

dispersed spherical particles,8,9 but it always underestimates

the effective magnetic susceptibility because this model

totally neglects the interaction between particles, and thus, it

will introduce large error especially when the volume frac-

tion of the inclusion particles is high. In order to take account

into the local interactions between particles, Bruggeman and

Hanai et al. proposed an integrate equation (namely, the fa-

mous Bruggeman-Hanai (BH) equation), which showed

good agreement between the theoretical prediction and ex-

perimental results.10–12 Based on the Bruggeman-Hanai

equation, Looyenga also proposed another variation equation

by assuming that the heterogeneous constitute is composed

by two similar “fictitious phases.”13

Additionally, Hashin and Shtrikman obtained the upper

and lower bounds of the effective magnetic susceptibility for

magnetic composite using a variational approach.14 By con-

sidering more rigorous approximation based on the

Maxwell-Garnett’s model, Meredith and Tobias proposed a

modified higher order equation to calculate the effective

coefficients of the composite.15 By employing the Green

function with corresponding boundary conditions, Fu et al.
derived an explicit effective permittivity of dielectric compo-

sites containing spherical particles from an analytical

approach.16 With the extension of Eshelby’s equivalent

inclusion method, Pittini-Yamada et al. formulated the effec-

tive magnetic susceptibility of a three-phase hybrid soft mag-

netic composite.17 Besides limited by the applicable

conditions, the above-mentioned approximations are only

focused on the estimation of the effective coefficients but

unavailable to obtain the local static magnetic field distribu-

tion. Therefore, it is quite necessary to develop a more effi-

cient algorithm which can be used to obtain both the

effective magnetic susceptibility and local field distribution

for magnetic composites with arbitrary magnetic susceptibil-

ity inhomogeneity and anisotropy.

Based on phase-field model, Wang et al. used the mag-

netization or polarization as the order parameter in the

Ginzburg-Landau kinetic equation to minimize the total

magnetic or electric free energy of the magnetic or dielectric

composites; thus, the electrostatic or static magnetic equilib-

rium equation can be satisfied automatically when the order

parameter is evolved to be quasi-stable.18 Then, the effective

magnetic susceptibility and local field distribution can be

0021-8979/2015/117(4)/043907/9/$30.00 VC 2015 AIP Publishing LLC117, 043907-1

JOURNAL OF APPLIED PHYSICS 117, 043907 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.118.37.128 On: Fri, 13 Mar 2015 21:15:38

http://dx.doi.org/10.1063/1.4906567
http://dx.doi.org/10.1063/1.4906567
http://dx.doi.org/10.1063/1.4906567
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4906567&domain=pdf&date_stamp=2015-01-26


calculated from the magnetization/polarization response

under externally applied magnetic/electric fields. In fact, this

method was already used by Wang et al. to solve the me-

chanical equilibrium equation of elastic composites with

elastic inhomogeneity and anisotropy in their earlier

works.19,20 In our previous work, we proved that the me-

chanical equilibrium equation of composites with arbitrary

elastic inhomogeneity and anisotropy can also be solved

more efficiently by other numerical algorithms based on the

so-called spectral iterative perturbation method (SPM).21

This SPM has been successfully used in solving the mechan-

ical equilibrium equation in various elastically inhomogene-

ous systems22–25 and electrostatic equilibrium equation in

ferroelectric-nanoparticle systems.26 Moreover, the physical

laws in dielectric and magnetic composites are very similar.

Therefore, the SPM should be a good and efficient tool for

studying the magnetic composites. In this paper, we will

derive the SPM in detail for magnetic composites and pres-

ent its accuracy and efficiency for calculating the effective

magnetic susceptibility and local static magnetic field

distribution.

The rest of this paper is organized as follows. In Sec. II,

we use the SPM to solve the static magnetic equilibrium

equation in magnetic composites with arbitrary magnetic

susceptibility inhomogeneity and anisotropy. In Sec. III, we

first take two special examples to compare the numerical

result of the proposed model with the results obtained from

the analytical expression; then we calculate some properties

of a two-phase composite by comparing the numerical result

with other theoretical approximation to numerically illustrate

the validity of the proposed model. Finally, the paper ends

with a short summary in Sec. IV.

II. SOLUTION OF THE STATIC MAGNETIC
EQUILIBRIUM EQUATION BY SPM

In this section, we show a general description of an arbi-

trary magnetic composite system and then solve the static

magnetic equilibrium equations using the Fourier spectral

iterative perturbation scheme. An arbitrary magnetic com-

posite in this work is described by the spatial position-

dependent magnetic susceptibility vmðrÞ, whose dependency

on the magnetic field relies on the constitute materials. Note

that besides the spatial position, the magnetic susceptibility

vmðrÞ in the proposed model also can be functions of exter-

nally applied magnetic field and frequency, but in this work,

all the calculations are done with assumption that vmðrÞ is

only dependent on the spatial position, i.e., each constitution

of the composite has a constant magnetic susceptibility

which corresponds to the saturated part of the magnetization

curve. The field and spatially position-dependent local mag-

netization Mðr;HÞ under a magnetic field in the magnetic

composite may be written as

Mðr;HÞ ¼ MSðrÞ þ vmðrÞHðrÞ; (1)

where MSðrÞ is called as the spontaneous magnetization,

which is nonzero in ferromagnetics or ferrimagnetics and

zero in paramagnetics or antiferromagnetics, and the total

magnetic field HðrÞ originates from the external magnetic

field Hext induced by the externally fixed current or magnet

and the demagnetization field HdðrÞ, i.e.,

HðrÞ ¼ Hext þHdðrÞ: (2)

From the analysis above, the magnetic induction Bðr;HÞ in

the composite can be written as

Bðr;HÞ ¼ l0ðHðrÞ þMðr;HÞÞ;
¼ l0ðHðrÞ þMsðrÞ þ vmðrÞHðrÞÞ;
¼ l0ðlðrÞHðrÞ þMsðrÞÞ; (3)

where lðrÞ ¼ dþ vmðrÞ is named relative permeability and

d is the Dirac delta function.

Rewriting the physical variables with bold font in Eq.

(3) in terms of components of vectors and tensors using

Einstein notation, the magnetic induction is as follows:

Biðr;HÞ ¼ l0ðlijðrÞHjðrÞ þMS
i ðrÞÞ: (4)

The Gauss’s law for magnetism requires that the divergence

of the magnetic induction equals to zero, i.e.,

@Bi r;Hð Þ
@xi

¼
@ l0 lij rð ÞHj rð Þ þMS

i rð Þ
� �h i

@xi
¼ 0: (5)

We introduce another physical variable umðrÞ which is

related to the demagnetization field by

Hd
j ðrÞ ¼ �rjumðrÞ; (6)

and here, we name it the demagnetization potential.

Substituting Eqs. (2) and (6) into Eq. (5), we have

@ lij rð Þ Hext
j �

@um rð Þ
@xj

 !
þMS

i rð Þ
" #

@xi
¼ 0: (7)

The position-dependent relative permeability can be written

in sum of homogeneous reference l0
ij and inhomogeneous

perturbation DlijðrÞ, i.e.,

lijðrÞ ¼ l0
ij þ DlijðrÞ: (8)

Substituting Eq. (8) into Eq. (7) and rearranging it, we can

obtain

l0
ij

@2um rð Þ
@xi@xj

¼ @

@xi
Dlij rð Þ Hext

j �
@um rð Þ
@xj

 !
þMS

i rð Þ
" #

:

(9)

Equation (9) is the key static magnetic equilibrium equations

for an magnetic composite system. With the assumption that

Eq. (9) is periodic in 3-dimensional coordinate system, it can

be numerically solved by the Fast Fourier Transform and SPM

for zeroth-order, first-order, or higher-order approximation.

Zeroth-order approximation: By assuming the relative

permeability to be homogeneous (namely DlijðrÞ is zero)

and solving Eq. (9), we have

043907-2 Wang et al. J. Appl. Phys. 117, 043907 (2015)
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l0
ij

@2u0
m rð Þ

@xi@xj
¼ @MS

i rð Þ
@xi

: (10)

This equation can be solved in Fourier space

�l0
ijqiqj ~u

0
mðqÞ ¼ Iqi

~M
S

i ðqÞ; (11)

where ~u0
mðqÞ and ~M

S

i ðqÞ are Fourier transforms of u0
mðrÞ

and MS
i ðrÞ, ~u0

mðqÞ ¼
Ð

V u0
mðrÞe�Iq�rd3r, ~M

S

i ðqÞ ¼
Ð

V MS
i ðrÞ

e�Iq�rd3r, respectively, q is the reciprocal lattice vector, qj

is the jth component of q, and I is the imaginary unit, then

we get

~u0
mðqÞ ¼ �IqiGðqÞ ~M

S

i ðqÞ; (12)

where G�1ðqÞ ¼ l0
ijqiqj. After inverse Fourier transforms on

both sides of Eq. (12), we obtain the zeroth-order approxima-

tion of the demagnetization potential,

u0
m rð Þ ¼ �

ð
d3q

2pð Þ3
IqiG qð Þ ~M

S

i qð ÞeIq�r: (13)

Using Fourier transformation method to solve Hd–0
j ðrÞ

¼ �rju0
mðrÞ, we can obtain the zeroth-order demagnetiza-

tion field

Hd–0
j rð Þ ¼ �

ð
d3q

2pð Þ3
Iqj ~u

0
m qð ÞeIq�r: (14)

First-order approximation: Substituting the zeroth-order

demagnetization potential Eq. (13) and demagnetization field

Eq. (14) in the iterative Eq. (9), we can obtain the first-order

demagnetization potential iteration

l0
ij

@2u1
m rð Þ

@xi@xj
¼ @

@xi
Dlij rð Þ Hext

j þ Hd–0
j rð Þ

� �
þMS

i rð Þ
h i

:

(15)

The solution of u1
mðrÞ is obtained in Fourier space

~u1
mðqÞ ¼ �IqiGðqÞfDlijðrÞðHext

j þ Hd–0
j ðrÞÞgq

� IqiGðqÞ ~M
S

i ðqÞ; (16)

where fDlijðrÞðHext
j þ Hd–0

j ðrÞÞgq indicates the Fourier

transforms of DlijðrÞðHext
j þ Hd–0

j ðrÞÞ, and the first-order

demagnetization field can be obtained by

Hd–1
j rð Þ ¼ �

ð
d3q

2pð Þ3
Iqj ~u

1
m qð ÞeIq�r: (17)

Higher-order approximation: The higher-order solutions

for umðrÞ are derived in a similar way as the first-order

approximation

l0
ij

@2un
m rð Þ

@xi@xj
¼ @

@xi
Dlij rð Þ Hext

j þ Hd– n�1ð Þ
j rð Þ

� �
þMS

i rð Þ
h i

:

(18)

Similar as u1
mðrÞ, the solution for un

mðrÞ is solved using

Fourier transforms

~un
mðqÞ ¼ �IqiGðqÞfDlijðrÞðHext

j þ H
d–ðn�1Þ
j ðrÞÞgq

� IqiGðqÞ ~M
S

i ðqÞ; (19)

and the higher-order demagnetization field can be obtained

by

Hd–n
j rð Þ ¼ �

ð
d3q

2pð Þ3
Iqj ~u

n
m qð ÞeIq�r: (20)

As for the total magnetic scalar potential UmðrÞ, with given

boundary conditions, it can be solved from

Hext
j þ Hd

j ðrÞ ¼ �rjUmðrÞ: (21)

Once the magnetic field distribution is obtained, the total

magnetization can be calculated from Eq. (1),

Miðr;HÞ ¼ MS
i ðrÞ þ vm

ij ðrÞHjðrÞ: (22)

The effective magnetic susceptibility tensor veff
ij of the com-

posite can be determined from Eq. (22) by solving

hMiðr;HÞ �MS
i ðrÞi ¼ veff

ij hHjðrÞi: (23)

III. RESULT AND DISCUSSION

For checking the accuracy of the proposed SPM, we first

employed two static magnetic inhomogeneous systems as

examples to perform the 3-dimensional simulations: a ferro-

magnetic sphere in infinite vacuum and a ferromagnetic hol-

low ball in a homogeneous magnetic field. Then, we studied

the effective magnetic susceptibility and local magnetic field

distribution in a two-phase magnetic composite with differ-

ent inclusion characteristics.

A. A ferromagnetic sphere in infinite vacuum

In the example of an isolated ferromagnetic sphere in

vacuum, as shown in Figure 1(a), the radius of the ferromag-

netic sphere is taken to be much smaller than the simulation

size for decreasing the overlapping effect on the solutions

induced by the periodic boundary conditions. A grid size of

128� 128� 128 is used for the simulation, and the radius

(R0) of the ferromagnetic sphere is assigned a value of 16. A

spontaneous magnetization of MS¼ 106 A=m along x-direc-

tion and an isotropic magnetic susceptibility of 100 are

assumed for the ferromagnetic sphere. To alleviate the Gibbs

effect in Fourier transforms in the spectral method arising

from a sharp interface, a diffuse-interface shape function to

describe the vacuum and the ferromagnetic is introduced as

the following:

g rð Þ ¼ 1

2
1:0� tanh c d rð Þ � R0ð Þ½ �
� �

; (24)

where dðrÞ is the distance of any point (x, y) from the

center of the sphere, and c is a positive parameter control-

ling the width of the surface. As a result, g has a value

of 1 inside the ball and a value of 0 outside of the ball.

043907-3 Wang et al. J. Appl. Phys. 117, 043907 (2015)
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The analytical solution of the static magnetic equilibrium

equation for such a special case obtained by solving

the Laplace equation with boundary conditions is as

follows:

u rð Þ ¼
M � r

3
; r � R0ð Þ

R3
0M � r
3r3

; r > R0ð Þ;

8>><
>>: (25)

where M is the total magnetization and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

Note that the total magnetization M in Eq. (25) is not same

as the spontaneous magnetization MS in Eq. (1) because M

is the result of considering the induced magnetization due

to the demagnetization field in the ferromagnetic sphere,

and they correlate with each other by M ¼ 3MS=ðvþ 3Þ
for this special case. It can be seen from Figures 1(b) and

1(c) that the numerical solutions of the magnetic scalar

potential and magnetic field agree well with the analytical

results through the whole cross sections of both A-A and

B-B, except a slight discrepancies at the boundary and

interface. The difference between the numerical solution

and the analytical solution stems from the fact that the nu-

merical solutions are obtained with periodic boundary con-

ditions with a diffuse-interface description for the sphere

surface while the analytical solution is for ideal sphere

in an infinite matrix with a sharp-interface description.

Also, the solution shows that the local magnetic field is

homogeneous inside the sphere. The local magnetic field

has maximal values on the interface along A-A cross sec-

tion, and it decreases gradually to zero in the vacuum far

away from the ferromagnetic particle.

Since each order of the approximation for the magnetic

solution is obtained analytically (see Eqs. (15) and (18)), the

proposed algorithm is extremely efficient. Figure 3(d) shows

solutions of the magnetic scalar potential along A-A cross

section with iterative numbers. As one can see, the solutions

converge very fast, and a third-order solution can reach a

very good approximation for this special case.

B. A magnetic hollow ball in an external homogeneous
magnetic field

In the second example, the magnetic scalar potential and

magnetic field distribution of a hollow ball with zero sponta-

neous magnetization in an external homogeneous magnetic

field are calculated using the proposed SPM and compared

with the analytical results. As shown in Figure 2(a), the inner

radius R1 and outer radius R2 of the hollow ball are assigned

values of 16 and 24. Similar as Eq. (25), Eq. (26) is the shape

function of the hollow ball for distinguishing the vacuum

and the ferromagnetics

g rð Þ ¼ 1

2
tanh c d rð Þ � R1ð Þ½ � � tanh c d rð Þ � R2ð Þ½ �
� �

: (26)

The analytical solution of the static magnetic equilib-

rium equation for this case is as follows:

FIG. 1. (a) Schematics of the middle

section (parallel to x-y plane) of an

isolated ferromagnetic sphere with

self-polarization MS along x direction

surrounded by vacuum, where R0 indi-

cates the radius of the sphere. (b)

Magnetic scalar potential u along A-A

and B-B cross-sections calculated from

SPM comparing with analytical

expression. (c) Local magnetic field

component Hx along A-A and B-B

cross-sections calculated from SPM

comparing with analytical expression.

(d) Solution of the magnetic scalar

potential u along A-A cross-section as

a function of iteration numbers from

SPM.

043907-4 Wang et al. J. Appl. Phys. 117, 043907 (2015)
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uðrÞ ¼
�9ðvþ 1ÞðHext � rÞ=K; ðr � R1Þ
�3ð2vþ 3ÞðHext � rÞ=K � 3vR3

1ðHext � rÞ=ðKr3Þ; ðR1 < r � R2Þ
�Hext � rþ vð2vþ 3ÞðR3

2 � R3
1ÞðHext � rÞ=ðKr3Þ; ðr > R2Þ;

8><
>: (27)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and K ¼ ð2vþ 3Þðvþ 3Þ � 2v2

ðR1=R2Þ3. We consider two magnetic hollow balls with mag-

netic susceptibility equal to 5 and 50, respectively, to study

the magnetic shielding effect. It can be seen from Figures

2(b) and 2(c) that the numerical solutions of the magnetic

scalar potential and magnetic field agree well with the ana-

lytical results through the whole cross sections of both A-A

and B-B for both the two cases. The magnetic field is discon-

tinuous along A-A cross section: In the center-hole area, it is

homogeneous and jumps at the inner interface, while at the

outer interface, it jumps again to the maximal value and then

decreases to external magnetic field in vacuum far away

from the interface. The discontinuity of the magnetic field is

shown more clearly by Figure 2(d). With the magnetic sus-

ceptibility increasing from 5 to 50, it can be seen from

Figure 2(c) that the magnetic field inside the magnetic gets

much closer to zero, which means that the center-hole area is

shielded from the external magnetic field. With the magnetic

susceptibility of the magnetic hollow ball becoming larger,

this shielding is more obvious, and the magnetic field at the

outer interface becomes larger.

C. A two-phase composite with different
microstructures

The formulated SPM in Sec. II is employed to study the

effects of the microstructure on the effective magnetic sus-

ceptibility and magnetic field concentration of a two-phase

composite. As the microstructure is associated with many

factors such as the size, shape, volume fraction, spatial

arrangement of inclusion particles, and the magnetic suscep-

tibility mismatch between the inclusion and matrix, and so

on. Due to that, most of the factors have been investigated

by the phase field method in the work of Wang et al. on the

dielectric composite,27 which is similar as the magnetic com-

posite system; here, therefore, we only focus on: the mag-

netic susceptibility mismatch between the inclusion and

matrix, inclusion volume fraction, and spatial arrangement.

Although the SPM is formulated in general 3-dimensional

situation, 2-dimensional computations are performed here to

make affordable the large amount of computations as

required for this work, and the above two examples have al-

ready verified that the proposed SPM works for 3-

dimensional cases. Additionally, we assume that the

FIG. 2. (a) Schematics of the middle

section (parallel to x-y plane) of an iso-

lated magnetic hollow ball in a homo-

geneous external magnetic field Hext,

where R1 and R2 indicate the inner and

outer radius of the hollow ball, respec-

tively. For two magnetics with differ-

ent susceptibility. (b) Magnetic scalar

potential / along A-A and B-B cross-

sections calculated from SPM compar-

ing with analytical expression. (c)

Local magnetic field component Hx

along A-A and B-B cross-sections cal-

culated from SPM comparing with an-

alytical expression. (d) Contour for the

solution of the magnetic scalar poten-

tial / of the middle-section for a mag-

netic with susceptibility v ¼ 5.

043907-5 Wang et al. J. Appl. Phys. 117, 043907 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.118.37.128 On: Fri, 13 Mar 2015 21:15:38



magnetic susceptibility of the inclusion and matrix are iso-

tropic for simplification, although the proposed SPM is for-

mulated for composites with arbitrary anisotropy, and we

use vF and vM to indicate the isotropic magnetic susceptibil-

ities of the inclusion and matrix, respectively.

We first investigate effects of the magnetic susceptibility

mismatch between the inclusion and matrix on the effective

magnetic susceptibility and local magnetic field distribution

in a two-phase composite with single inclusion particle at a

volume fraction 3.0%, as shown in Figures 3(a) and 3(b).

Two variables are introduced to describe the magnetic

susceptibility mismatch effect on the effective susceptibility

of the composite: One is a ¼ vF=vM named susceptibility

mismatch ratio of the inclusion to the matrix, and the other is

b ¼ veff=vM named effective susceptibility ratio of the com-

posite to the matrix. In this work, the susceptibility vM of the

matrix is kept constant, and the susceptibility vF of the inclu-

sion is adjusted to change the susceptibility mismatch ratio

a. It can be seen from Figure 3(a) that with the increase in a ,

b increases, while db=da decreases. The effective suscepti-

bility is getting close to saturation when the susceptibility

mismatch ratio is about 50, which is similar as the result of

dielectric composite system from the phase field simula-

tion.27 With regard to the local magnetic field concentration,

it can be seen from Figure 3(b) that the magnitude of maxi-

mal local magnetic field component Hmax
x =Hext decreases

when a � 1 and increases when a > 1 with a increasing.

Therefore, it can be concluded that the susceptibility mis-

match can introduce the local magnetic field concentration.

The two insets in Figure 3(b) exhibit the distribution of the

local magnetic field component Hx=Hext when a ¼ 10–1 and

a ¼ 102, respectively. It can be seen that the magnetic field

inside the inclusion is homogeneous which is strengthened

when a < 1 but weakened when a > 1.

In order to investigate the effect of the inclusion volume

fraction on the effective susceptibility, the proposed SPM

and some phenomenological approximations are used to cal-

culate the effective susceptibility and make comparison. The

predication of the effective susceptibility from the MG equa-

tion is described by

veff ¼ vM þ
dVFkvM

1� VFk
; (28)

where d is the dimensionality of the system and k¼ðvF�vMÞ=
ðvFþðd�1ÞvMÞ. In the BH equation, the effective susceptibil-

ity is indirect and has to be solved, as shown in the following

equation:

veff � vF

vM � vF

vM

veff

� �1=3

¼ 1� VF: (29)

For Looyenga equation, it is, in fact, a special case with n
¼ 1=3 in the Lichtenecker-Rother mixing rule

ðveffÞn ¼ ½ð1� VFÞðvMÞn þ VFðvFÞn�: (30)

The Meredith-Tobias equation is more rigorous equation

with higher order of VF based on the Maxwell-Garnett model

veff

vM

¼ 1þ
3VFk� 4:221k VFð Þ10=3 vF � vMð Þ= 3vF þ 4vMð Þ

1� VFk� k 1:227 VFð Þ7=3 þ 2:178 VFð Þ10=3
� �

vF � vMð Þ= 3vF þ 4vMð Þ
; (31)

where k has the same meaning in Eq. (28). Two cases

are considered here to calculate the corresponding effective

susceptibility and local field distribution. The first case is a

two-phase composite with a single inclusion particle but dif-

ferent inclusion particles volume fraction due to the different

size. In this case, there is no interaction among inclusion

FIG. 3. For a two-phase composite with single inclusion particle at a volume

fraction of 3.0%, effects of the susceptibility mismatch on (a) the effective

susceptibility and (b) the distribution of component Hx of the maximal local

magnetic field. The variables of vF and vM indicate the isotropic magnetic

susceptibilities of the inclusion particle and matrix, respectively.
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particles except the overlapping effect induced by the peri-

odic boundary condition. It can be seen from Figure 4(a) that

the proposed SPM, Bruggeman approximation, and

Meredith-Tobias approximation give very close results for

the single inclusion particle case. As for the Maxwell-

Garnett approximation, it underestimates the effective sus-

ceptibility especially when the volume fraction of the inclu-

sion particle is high. On the contrary, the Looyenga

approximation overestimates the effective susceptibility

especially when the volume fraction of the inclusion particle

is high. The second case is also a two-phase composite but

with multi inclusion particles, and the volume fraction of the

inclusion particles can be changed by adjusting the quantity.

In this case, there are interactions among inclusion particles

besides the periodic boundary condition induced overlapping

effect. For this case, as shown in Figure 4(b), the proposed

SPM and Looyenga approximation give the closest results

for the effective susceptibility when the volume fraction of

the inclusion particle is lower than 20%. However, when the

inclusion volume fraction is higher than 20%, the Looyenga

model gives higher result of the effective susceptibility than

the SPM. In other words, The Looyenga model is a good

approximation when the inclusion particle dispersion is mod-

erately sparse. Similar as the first case, the Maxwell-Garnett

model always underestimate the effective susceptibility com-

pared with all other approximations. However, for this multi

inclusions case, the Bruggeman and Meredith-Tobias

approximations also underestimate the effective susceptibil-

ity compared to the proposed SPM when the volume fraction

of the inclusion particle is lower than 44%, and it seems that

this tendency is broken at VF ¼ 44% beyond which the

results from Bruggeman and Meredith-Tobias approxima-

tions will be higher than from SPM.

The spatial arrangement of inclusion particles is also an

important factor in determining the effective susceptibility

and local magnetic field concentration. For example, it has

been shown in experiments that the effective susceptibility

and breakdown strength (for dielectric composites) can be

greatly affected by the alignments of the inclusion par-

ticles.28–31 In this work, two different structures, an isotropic

structure with well-dispersed inclusion particles and an ani-

sotropic structure with chain-dispersed inclusion particles,

are used to study the effects of the susceptibility mismatch

on the effective susceptibility and local magnetic field con-

centration. Figure 5(a) shows the effective susceptibility

affected by the susceptibility mismatch for a two-phase com-

posite with two different inclusion particles arrangements.

For the isotropic structure with well-dispersed inclusion par-

ticles, the effective susceptibility is also isotropic with the

assumption that the susceptibilities of the inclusion particles

and matrix are isotropic. While for the anisotropic structure

with chain-dispersed inclusion particles, the effective sus-

ceptibility becomes anisotropic although the susceptibilities

of the inclusion particles and matrix are isotropic. With the

susceptibility mismatch ratio a increasing, the effective sus-

ceptibility component in x direction for the chain-structured

composite increases greatly faster than the component along

y direction and the isotropic counterpart. Additionally, the

effective susceptibility component in y direction is always

smaller than the isotropic case. As for the reason, it can be

attributed to the demagnetization effects induced by the

interfaces in the composite. For composite with well-

dispersed inclusion particles at volume fraction VF ¼ 19:6%,

the interactions between particles are not strong enough to

significantly reduce the demagnetization effect of individual

particles; thus, the composites exhibit moderate effective

susceptibility in all directions. However, with particles

aligned into chains, particles strongly interact through static

magnetic forces in the chain direction to greatly reduce the

demagnetization effect of the particles in each chain, result-

ing in significantly improved effective susceptibility along

the chain direction. In the transverse direction, on the other

hand, the strong chain-chain interactions enhance the demag-

netization effect, leading to the decreased effective suscepti-

bility component. Therefore, the chain-structured composites

exhibit significant effective susceptibility anisotropy, which

results from the microstructure anisotropy of the inclusion

particles arrangement.

FIG. 4. Effects of inclusion volume fraction on the effective susceptibility

of a two-phase composite with (a) single and (b) multi inclusion particles,

respectively. The black line with square in (a) and (b) indicates the numeri-

cal results calculated from the proposed SPM method, compared with ana-

lytical results calculated from other phenomenological approximations. The

variables of vF and vM indicate the isotropic magnetic susceptibilities of the

inclusion particle and the matrix, respectively, and veff indicates the effec-

tive magnetic susceptibility of the composite.
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Not only the effective susceptibility, but also can the

local magnetic field contribution be significantly affected by

the inclusion particles arrangement. As shown in Figure

5(b), the maximal magnitude of the local magnetic field as

function of the susceptibility mismatch ratio a for the com-

posite with isotropic arrangement of the inclusion particles

are calculated when the external magnetic field H
ext are

applied along x (namely [100]) and y (namely [010]) direc-

tions, respectively. It can be seen that whatever the external

magnetic field is along [100] or [010] direction, the maximal

local magnetic fields along the Hext direction (see the black

line with solid squares and the red line with open circles) are

the same and higher than the transverse counterparts (see the

black line with open squares and the red line with solid

circles), indicating an isotropic characteristic. However, for

the composite with chain arrangement of the inclusion par-

ticles, as shown in Figure 5(c), the maximal magnitude of

the local magnetic field Hmax
x when Hext is along [100] direc-

tion (see the black line with solid squares) is greatly higher

than Hmax
y when Hext is along [010] direction (see the red

line with open circles), exhibiting a huge anisotropy.

Figures 6(a)–6(f) give the local distributions of the mag-

netic field in those two kinds of composites when the exter-

nally applied magnetic field is along [100] and [010]

directions. For the composite with isotropic inclusion par-

ticles arrangement, the magnetic field distributions under

x-direction external magnetic field and y-direction external

magnetic field can be equivalent by transforming the coordi-

nates; thus, we only showed the case under x-direction exter-

nal magnetic field. It can be seen from Figures 6(a)–6(f) that

the local magnetic field concentrates severely in the matrix

region near the particles. For the parallel component of the

local magnetic field, it concentrates along the direction of

the external magnetic field. For the perpendicular component

of the local magnetic field, it concentrates along a direction

FIG. 5. Effect of the arrangement of the inclusion particles on (a) the effec-

tive susceptibility and (b) and (c) the local magnetic field concentration of a

two-phase composite with multi inclusion particles. Both the inclusion par-

ticles volume fractions in these two structures are VF ¼ 19:6%, and exter-

nally applied magnetic fields along [100] and [010] directions are used to

calculate the local field distribution. The susceptibility mismatch ratio are

taken a ¼ 10. The variables of vF and vM indicate the isotropic magnetic

susceptibilities of the inclusion particle and the matrix, respectively, and veff

indicates the effective magnetic susceptibility of the composite.

FIG. 6. The local magnetic field distributions of a two-phase composite with

the susceptibility mismatch ratio a ¼ 10 and inclusion particles volume fraction

VF ¼ 19:6% for two different inclusion particles arrangements, i.e., an isotropic

dispersion and a chain-structured dispersion of the inclusion particles, under

externally applied magnetic field along [100] and [010], respectively.
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which forms a 45� or 135� angle with the direction of the

externally applied magnetic field. In the anisotropic structure

with chain-arranged inclusion particles, the concentration for

the normal component of the local magnetic field is much

more serious than the isotropic case. In such an anisotropic

structure, the close connectivity of the inclusion particles

along the chain direction and greatly reduced demagnetiza-

tion factor allow the magnetic field to penetrate into the

inclusion particles and propagate through the chains, leading

to a high effective susceptibility while, on the other hand,

concentrating the large local magnetic field in the matrix at

the necks and gaps between particles. Although the local

electric field concentration in dielectric composites is harm-

ful to the breakdown strength of high density energy-storage

materials, the local magnetic field concentration in magnetic

composite can be pretty useful to improve the sensitivity of

magnetic sensors and promote the development of magnetic

nano-particles for gene and drag delivery.32,33 Therefore,

both the effective susceptibility and local magnetic field con-

centration are affected by the microstructure of the magnetic

composite, and how to utilize the improvement of the effec-

tive susceptibility and the local magnetic field concentration

lies on the actual requirements.

IV. CONCLUSION

In summary, an efficient algorithm based on the pro-

posed Fourier spectral iterative perturbation method is used

to compute properties of the magnetic composite with arbi-

trary susceptibility inhomogeneity and anisotropy. The accu-

racy of the proposed method is studied by comparing the

numerical results with analytical results, and the compari-

sons show good agreements, validating that the proposed

algorithm is an accurate tool for predicting the effective

properties of the magnetic composite, especially when the

interactions between inclusion particles are strong. The

effects of the microstructures including the susceptibility

mismatch between the inclusion particles and matrix, inclu-

sion particles volume fraction, and inclusion particles

arrangement on the magnetic composite are investigated. It

is concluded that the static magnetic interactions among the

inclusion particles embedded in the matrix play critical roles

in determining the composite properties, which sensitively

depend on inclusion particles arrangement and, especially,

the chain structure. Such chain structure exhibits strong

effective susceptibility anisotropy despite all constituent

components being isotropic. The proposed method is a good

tool to design a composite with appropriate microstructures

for pursuing simultaneously the improvement of the effec-

tive susceptibility and concentration of the local magnetic

field. The studies in this work not only work for the magnetic

composite but also for the dielectric composite.
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